New Statistical Models for Randoms - Precorrected PET
نویسنده
چکیده
PET measurements are usually precorrected for accidental coincidence events by real-time subtraction of the delayed window coincidences. Randoms subtraction compensates in mean for accidental coincidences but destroys the Poisson statistics. We propose and analyze two new approximations to the exact log-likelihood of the precorrected measurements, one based on a \shifted Poisson" model, the other based on saddle-point approximations to the measurement probability mass function (pmf). The methods apply to both emission and transmission tomography; however in this paper we focus on transmission tomography. We compare the new models to conventional data-weighted least squares (WLS) and conventional maximum likelihood (based on the ordinary Poisson (OP) model) using simulations and analytic approximations. The results demonstrate that the proposed methods avoid the systematic bias of the WLS method, and lead to signiicantly lower variance than the conventional OP method. The saddle-point method provides a more accurate approximation to the exact log-likelihood than the WLS, OP and shifted Poisson alternatives. However, the simpler shifted Poisson method yielded comparable bias-variance performance in the simulations. The new methods ooer improved image reconstruction in PET through more realistic statistical modeling, yet with negligible increase in computation over the conventional OP method.
منابع مشابه
Statistical Tomographic Image Reconstruction Methods for Randoms-Precorrected PET Measurements
Statistical Tomographic Image Reconstruction Methods for Randoms-Precorrected PET Measurements
متن کاملNew Statistical Models for Randoms-Precorrected PET Scans
PET measurements are usually precorrected for accidental coincidence events by real-time subtraction of the delayed window coincidences. Randoms subtraction compensates in mean for accidental coincidences but destroys the Poisson statistics. We propose and analyze two new approximations to the exact log-likelihood of the precorrected measurements, one based on a “shifted Poisson” model, the oth...
متن کاملStatistical image reconstruction methods for randoms-precorrected PET scans
Positron emission tomography (PET) measurements are usually precorrected for accidental coincidence events by real-time subtraction of the delayed-window coincidences. Randoms subtraction compensates on average for accidental coincidences but destroys the Poisson statistics. We propose and analyze two new approximations to the exact log-likelihood of the precorrected measurements, one based on ...
متن کاملObjective Functions for Tomographic Reconstruction from Randoms-Precorrected PET Scans
In PET, usually the data are precorrected for accidental coincidence (AC) events by real-time subtraction of the delayed window coincidences. Randoms subtraction compensates in mean for AC events but destroys the Poisson statistics. Furthermore, for transmission tomography the weighted least-squares (WLS) method leads to systematic biases, especially at low count rates. We propose a new “shifte...
متن کاملRandoms variance reduction in 3D PET.
In positron emission tomography (PET), random coincidence events must be removed from the measured signal in order to obtain quantitatively accurate data. The most widely implemented technique for estimating the number of random coincidences on a particular line of response is the delayed coincidence channel method. Estimates obtained in this way are subject to Poisson noise, which then propaga...
متن کامل